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Cis-epoxides via Sharpless’ Asymmetric Dihydroxylation Reaction: 
Synthesis of (+)~Disparlure 
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AbslnuC f+)-Disparlurc, c~~niflg an isokd cirepoxide fkctional group, was synthesized employing 
the asymmetric dihydroxylation and cyclic sulfate nxrrangemcnt-opening reactions as the key steps. 

(+Disparlure, the sex attmctant pheromone of the female gypsy moth, L+mmtriu dispur (L.), has been 

the target of numerous syntheses,t in whch the &irality of the product has been procunzd employing either 

enantiopure natural products as starting materials2 or asymmetric reactions-biological3 or abiological.+6 

Among the syntheses in the latter group, the ones employing asymmetric epoxidation (AE)5 and asymmetric 

dihydmxylation (AD)~ offer an interesting comparison of the two, closely related asymmetric processes. 

The AE-based strategy for the synthesis of an isolated cisepoxide such as disparlure requires an AE 

reaction of a {IT)-allytic alcohol followed by a chain elongation at the hy~xy~~ylene terminus. In the case 

of the disparlure synthesis, Sharpless et al. achieved the chain elongation in three steps: oxidation to aldehyde; 

Wittig reaction; hydrogenation.5 

Considering that one great strength of the AD process is its ability to react with isolated olefins,7 the 

AD-based strategy may be expected to be more straightforward for the synthesis of an isolated epoxide, since a 

one-pot procedure has been developed to s~~s~i~c~ly convert vi&al diols to epoxides.8 This, however. is 

true only with a frQm-epoxide. for the necessary diol intermediate for a ck-epoxide is an erythro-diol, which 

would be formed from a (Z)-olefin, not an ideal substrate for the AD process.~ In order to convert an AD 

product, a rhreo-diol, to cis-epoxide, one requires a regioselectiw functionalization of one hydroxyl group, e.g., 

a succession of reactions involving a regioselective protection of one hydmxyl group; a sulfonation of the other 

hydroxyl group; depmtection; ep&de formation. This, Keiuan et al. ingeniously achieved in their synthesis of 

disparlure by way of a neighboring group participation: AD of (Q-y&unsaturated ester was followed by an in 

situ r_lactonization, thereby differentiating the two hydroxyl groups.6 The disparlure synthesis was then 

completed after a chain elongation similar to the one used in the AFGased strategy. 

While this method served their pmpose well, it may not be applicable as a general solution for the 

synthesis of cisepoxides, It is apparent that one substituent of the ciscpoxide product has to be at least three- 

carbon long (from y-lactone), and substituents on or near the starting C,C-double bond may alter the 
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lactonization pattern. If the in situ cyclization is not regioselective. the regioisomers must be separated as they 

may eventually lead to the antipodal epoxide products. 

Our on-going interest in the synthesis of carbohydrates and related polyhydroxylated compounds 

recently led us to develop an indirect method to access eryrhro-diols via AD.10 The key step was a novel. 

irreversible Payne-type rearrangement-opening reaction (Scheme I). This highly regioselective, one-pot process 

is also compatible with a variety of substrate types and nucleophiles. Combining the two one-pot processeslO. 

together, one would then have an efficient and general method for the enantioselective synthesis of cis- 

epoxides. 

scheme I 
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Thus, Q-Ztridecen-l-01 1 was TBDMS-protected (100 96) and the product dihydroxylated using AD- 

mix-c%11 (92 %, 90 %ee,** Scheme II). The resulting rhreo-diol 2 was converted to the cyclic sulfate 3 (99 

%).13 The product was treated first with TBAF (trihydrate), and after drying, with the required dialkyl cuprate 

under anhydrous reaction conditions. 14 After aqueous acidic work-up, however, none of the desired erythro- 

dio14 was obtained, instead, the only isolated product was an opening product by iodide 5 (quantitative yield). 

While cuprates, prepared from CuI and commercial alkyllithiums (salt-free), have been successfully used in the 

cyclic sulfate rearrangement-opening pmcess,lm when a dialkyl cuprate is generated from an alkyllithium, 

which has been pnzpared in situ tirn the corresponding alkyl iodide and t-BuLi(2 eq.),15 as in the present 

synthesis, a competitive opening by iodide is apparently the only possible reaction pathway. 

Therefore, a slight detour was taken and the erythro-diol 4 was prepared in two steps from the cyclic 

sulfate 3: After the desilylation/rearrangement of 3 using T&@3H20, the dried reaction mixture was treated 

with Cmethyl- I-pentynyllithium @+-methyl- 1 -pentyne/n-B&i). After aqueous acidic work-up, the erythro-diol 

6 was isolated in 66 % yield, which was then converted to 4 (H2, Pd/C, 95 96, 70 96 recovery after 

recrystallization from ether-pentane). Conversion of the erythro-diol4 to (+)-disparlum was achieved using the 

three-step, one-pot procedure (MeC(OMe)3; AcBr; K2CO3,78 %).8 While this conversion method has been 

mainly used for the synthesis of truns- or terminal epoxides, it worked well in the present case (erythro-diol -> 

cis-epoxide). where the steric demand may be greater.16 

Thus, the route taken in our synthesis of disparlure serves as an efficient alternative for the 

enantioselective preparation of cis-epoxides. With the cyclic sulfate Zeaxrangement-opening process affording 

erythro-diols,~~ and now cis-epoxides as well, the synthetic utility of the AD process will be further expanded. 
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Experiments procedure for the rearrangement-opening step (3 -> 6): The cyclic sulfate 3 ( 1 .O g, 2.45 

mmol) was dissolved in THF (30 mL) and TBm.3H20 (0.85 g, 2.7 mmol) was added. The mixture was stirred 

at rt for 5 min. TLC (hexane-EtOAc 4: 1) indicated the complete disappearance of the starting material and tie 

p=sence of base-line material. The solvent was evaporated on a rotary evaporator and the mixture was further 

concentrated with the aid of dichloromethane (2 X 20 mL). Finally the mixture was dried under high vacuum 

for 1 h. In the meantime, 4-methyl-l-pentynyllithium was prepared in a second flask using 4-methyl-l-pentyne 

( 1.17 mL, 10 mmol) and n-BuLi (9 mmol) in THF (20 mL) at -30 “C. The solution was cooled to -70 “C, and 

were added, slowly and simultaneously, the first reaction mixture as a solution in THF (15 mL), and BF3GEt2 

( 1.15 mL. 9 -1). The entire mixture was stirred at -70 “C for 1 h, then warmed to -30 OC, where it was 

stirred for further 2 h. The reaction was quenched by adding H2SO4 (20 %, 20 mL). The mixture was stirred at 

rt overnight. Extractive work-up (EtOAc - NaHC03) followed by chromatographic purification (hexane-EtOAc 

4: 1) yielded 6 as a white solid, mp 65 - 67 “C (0.48 g, 64 %). l7 
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